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An Overview of the SPHINX Speech
Recognition System
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Abstract—Speaker independence, continuous speech, and large vo-
cabularies pose three of the greatest challenges in automatic speech
recognition. Previously, accurate speech recognizers avoided dealing
simultaneously with all three problems. This paper describes SPHINX,
a system that demonstrates the feasibility of accurate, large-vocabu-
lary speaker-independent, continuous speech recognition.

SPHINX is based on discrete hidden Markov models (HMM’s) with
LPC-derived parameters. To provide speaker independence, we added
knowledge to these HMM’s in several ways: multiple codebooks of
fixed-width parameters, and an enhanced recognizer with carefully de-
signed models and word duration modeling. To deal with coarticula-
tion in continuous speecch, yet still adequately represent a large vocab-
ulary, we introduce two new subword speech units—function-word-
dependent phone models and generalized triphone models. With gram-
mars of perplexity 997, 60, and 20, SPHINX attained word accuracies
of 71, 94, and 96 percent on a 997-word task.

I. INTRODUCTION

ONSIDERABLE progress has been made in speech
recognition in the past 15 years. Many successful
systems [1]-[7] have emerged. Each of these systems has
attained very impressive accuracy. However, they owe
their success to one or more of the constraints they im-
pose. This paper describe SPHINX, a system that tries to
overcome three of these constraints: 1) speaker depen-
dence, 2) isolated words, and 3) small vocabulalry.I
Speaker independence has been viewed as the most dif-
ficult constraint to overcome. This is because most para-
metric representations of speech are highly speaker de-
pendent, and a set of reference patterns suitable for one
speaker may perform poorly for another speaker. Re-
searchers have found that errors increased by 300-500
percent when a speaker-dependent system is trained and
tested in speaker-independent mode [8], [9]. Because of
these difficulties, most speech recognition systems are
speaker dependent. In other words, they require a speaker
to “‘train’’ the system before reasonable performance can
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"There are many other constraints that SPHINX does impose: simple
language model, benign environment, cooperative speakers. etc.

be expected. This training phase typically requires several
hundred sentences. While speaker-trained systems are
useful for some applications, they are inconvenient, less
robust, more wasteful, and simply unusable for some ap-
plications. Speaker-independent systems must train on less
appropriate training data. However, many more data can
be acquired, which may compensate for the less appro-
priate training material.

Continuous speech recognition is significantly more dif-
ficult than isolated word recognition. Its complexity is a
result of three innate properties of continuous speech.
First, word boundaries are difficult to locate. Second,
coarticulatory effects are much stronger in continuous
speech, causing the same sound to appear differently in
various contexts. Third, content words (nouns, verbs, ad-
jectives, etc.) are often emphasized, while function words
(articles, prepositions, pronouns, short verbs, etc.) are
poorly articulated. Error rates increase drastically from
isolated-word to continuous speech. For example, Bahl er
al. [10] reported a 280 percent error rate increase from
isolated-word to continuous speech recognition. How-
ever, in spite of these problems and degradations, we be-
lieve that it is important to work on continuous speech
research. Only with continuous speech can we achieve the
desired speed and naturalness of man-machine commu-
nications.

Large vocabulary typically implies a vocabulary of
about 1000 words or more. As vocabulary size increases,
so does the number of confusable words. Also, larger vo-
cabularies require the use of subword models, because it
is difficult to train whole word models. Unfortunately,
subword units usually lead to degraded performance be-
cause they cannot capture coarticulatory (interunit) effects
as well as word models can. Error rate increased by 200-
1000 percent in several studies [11]-[13]. In spite of these
problems, large vocabulary systems are still needed for
many versatile applications, such as dictation, dialog sys-
tems, and speech translation systems.

In this paper, we describe SPHINX, a large-vocabulary
speaker-independent, continuous speech recognition sys-
tem. SPHINX employs discrete hidden Markov models
(HMM’s) with LPC-derived parameters. To deal with
speaker independence, we added knowledge to these
HMM’s in several ways. We represented additional
knowledge through the use of multiple vector quantized
codebooks. We also enhanced the recognizer with care-
fully designed models and word duration modeling. To
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deal with coarticulation in continuous speech, yet ade-
quately represent a large vocabulary, we introduced
two new speech units—function-word-dependent phone
models and generalized triphone models. With these tech-
niques, SPHINX achieved speaker-independent word rec-
ognition accuracies of 71, 94, and 96 percent on the 997-
word DARPA resource management task [14] with gram-
mars of perplexity 997, 60, and 20.

In this paper, we first describe the task and database
used for evaluating SPHINX in the following section.
Section III then describes a baseline implementation of
SPHINX. Enhancements to SPHINX using additional hu-
man knowledge and improved subword models are de-
scribed in Sections IV and V. Section VI summarizes the
results with SPHINX, and Section VII concludes with
some final remarks. A full description of the SPHINX
System can be found in [15] and [16].

II. TAsK AND DATABASE

A. The Resource Management Task

SPHINX was evaluated on the DARPA resource man-
agement task [14]. This task, containing a vocabulary of
997 words, was designed for database query of naval re-
sources. As such, there are a large number of long words,
such as Apalachicola, Chattahoochee, and ECGO41.
These words are relatively easy to recognize. On the other
hand, it also contains many confusable pairs, such as
what/what’s, what/was, the/a, four/fourth, are/were, any/
many, etc. Also, there are many function words (such as
a, and, of, the, to), which are articulated very poorly and
are hard to recognize or even locate. In particular, rthe and
a are the most frequent words, but are optional according
to the grammar.

The original grammar designed for the resource man-
agement task was a finite state grammar. This grammar
had a perplexity of only about 9, which was too simple.
Instead, we used three more difficult grammars with
SPHINX: 1) null grammar (perplexity 997), where any
word can follow any other word, 2) word-pair grammar
(perplexity 60), a simple grammar that specifies a list of
words that can legally follow any given word, and 3) bi-
gram grammar (perplexity 20), a word-pair grammar that
uses word-category transitions probabilities estimated
from the grammar. It should be noted that the training and
testing sentences were generated from the finite state
grammar, which may reduce acoustic confusability [17].

B. The TIRM Database

Texas Instruments supplied Carnegie Mellon with a
large speech database for the resource management task
described in the previous section. The TIRM database
contains 80 ‘‘training’’ speakers, 40 ‘‘development test’’
speakers, and 40 ‘‘evaluation speakers.’’ At the time of
this writing, only the 80 training speakers and the 40 de-
velopment test speakers are available. Of these speakers,

85 are male and 35 are female, with each speaker reading
40 sentences generated by the sentence pattern grammar.

These sentences were recorded using a Sennheiser
HMD-414-6, close-talking noise-cancelling headset-boom
microphone in a sound-treated room. All speakers were
untrained and instructed to read a list of sentences in a
natural continuous fashion. The speech was sampled at 20
kHz at TI, downsampled to 16 kHz at the National Insti-
tute of Standards and Technology and saved on magnetic
tapes.

In this study, all 80 training speakers, as well as 25 of
the development test speakers, were used as training ma-
terial. This gave us a total of 4200 training sentences. The
remaining 15 development test speakers were set aside as
testing speakers. Ten sentences were taken from each
speaker, for a total of 150 test sentences.

HI. THE BASELINE SPHINX SYSTEM

To establish a performance benchmark using standard
HMM techniques on the resource management task, we
began with a baseline HMM system. This system uses
standard HMM techniques employed by many other sys-
tems [18]-[20]. We will show that, using these techniques
alone, we can already attain reasonable, albeit mediocre,
accuracies.

A. Speech Processing

The speech is sampled at 16 kHz, and preemphasized
with a filter whose transform function is 1-0.97z~'. The
waveform is then blocked into frames. Each frame spans
20 ms, or 320 speech samples. Consecutive frames over-
lap by 10 ms, or 160 speech samples. Each frame is mul-
tiplied by a Hamming window with a width of 20 ms and
applied every 10 ms.

From these smoothed speech samples, we computed the
LPC coeflicients using the autocorrelation method [21].
LPC analysis was performed with order 14. Finally, a set
of 12 LPC-derived cepstral coeflicients was computed
from the LPC coefficients. This representation is very
similar to that used by Shikano er al. {22] and Rabiner et
al. [23].

The 12 LPC cepstrum coefficients for each frame were
then vector quantized into one of 256 prototype vectors.
These vectors were generated by a variant of the Linde-
Buzo-Gray algorithm [24], [22] using Euclidean dis-
tance. We used 150 00 frames of nonoverlapped 20-ms
coeflicients extracted from 4000 sentences to generate the
256-vector codebook.

B. Phonetic Hidden Markov Models

Hidden Markov Models (HMM) were first described by
Baum [25]. Shortly afterwards, they were independently
extended to automatic speech recognition by Baker [26]
and Jelinek [27]. However, only in the past few years have
HMM’s become the predominant approach to speech rec-
ognition.
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HMM'’s are parametric models particularly suitable for
describing speech events. The success of HMM’s is
largely due to the forward-backward reestimation algo-
rithm [19], which is a special case of the EM algorithm
[25]. Every iteration of the algorithm modifies the param-
eters to increase the probability of the training data until
a local maximum has been reached.

Because the resource management task is a large-vo-
cabulary one, we cannot adequately train a model for each
word. Thus, we have chosen to use phonetic HMM’s,
where each HMM represents a phone. There are a total
of 45 phones, each characterized by

¢ {s}—a set of states including an initial state S, and
a final state S,

* {a;}—a set of transitions where a; is the prob-
ability of taking a transition from state / to state j,

* {b;(k)}-the output probability matrix: the prob-
ability of emitting symbol k when taking a transition from
state i to state j, k corresponds to one of the 256 VQ codes.

Each phonetic HMM has the topology shown in Fig. 1.
The three self-loops model three parts of a phone, and the
lower transitions explicitly model durations of one, two,
or three frames. Instead of assigning a unique output pdf
to each transition, each phone is assigned three distribu-
tions, representing the beginning, middle, and end of the
phone. Each of these three distributions is shared by sev-
eral transitions. This model is almost identical to that used
by IBM [28].

C. Training

To initialize our phone model parameters, we used
hand-segmented and hand-labeled segments from 2240
TIMIT [29] sentences. We ran one iteration of forward-
backward on these hand-labeled phone segments, and
produced a model for each phone. This set of 45 phone
models was used to initialize the parameters in the actual
training.

After this initialization, we ran the forward—backward
algorithm on the resource management (TIRM) training
sentences. For each of the 4200 sentences, we created a
sentence model from word models, which were in turn
concatenated from phone models. To determine the pho-
netic spelling of a word, we used a pronunciation dictio-
nary adopted from the baseform of the ANGEL System
[30], where each word is mapped to a single linear se-
quence of phones. Then, to create a sentence model from
word models, we accounted for possible between-word
silences by inserting a mandatory silence model at the be-
ginning and at the end of the sentence. Between-word si-
lences were also allowed, but were optional. This sen-
tence model represents the expected pronunciation of the
sentence. It was trained against the actual input speech
using the forward-backward algorithm [19].

Two iterations of forward-backward training were then
run. Most other HMM systems run more iterations, but
we found that with our appropriate initialization, two it-
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Fig. 1. The phone HMM used in baseline SPHINX. The label on a tran-
sition represents the output pdf to which the transition is tied.

erations were sufficient. The trained transition probabili-
ties were used directly in recognition. The output prob-
abilities, however, were smoothed with a uniform distri-
bution to avoid probabilities that were too small.

The SPHINX recognition search is a standard time-syn-
chronous Viterbi beam search [19], [20]. The search pro-
cesses input speech time synchronously, completely up-
dating all accessible states for a time frame ¢ — 1 before
moving on to frame ¢. The update for time 7 consists of
two stages. First, for each within-word transition between
states Sg,, and S,,, if P(sg,,, t — 1). P(transition)
- P(output) is greater than P(s,,, t), then P(s,,, 1) is
updated. Second, for the final state of every word, all le-
gal word successors are tried, using P (transition ) derived
from the language model.

In the Viterbi beam search, a hypothesis is pruned if its
log probability is less than that of the best hypothesis by
more than a preset threshold. We found it is possible to
prune 80-90 percent of the hypotheses without any loss
in accuracy. After the search is completed, a backtrace is
performed to recover the best path.

D. Results

The results with the baseline SPHINX system, using 15
new speakers with 10 sentences each for evaluation, are
shown in Table I. To determine the recognition accuracy,
we first align the recognized word string against the cor-
rect word string using a string match algorithm supplied
by the National Institute of Standards and Technology
[31]. This alignment determines WordsCorrect, Substi-
tutions, Deletions, Insertions. Finally, PercentCorrect
and WordAccuracy are computed by

Percent Correct

Words Correct

= 100
Correct Length

(1)

Word Accuracy

Correct Length—Subs—Dels—Ins
Correct Length '

= 100 - (2)
Confusions between homonyms (such as ship’s and ships,
or two and too) are not counted for the null language
model, and are counted for the word pair and the bigram
language model.

The results of this system are mediocre at best. Since
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TABLE |
BASELINE SPHINX RESULTS, EVALUATED ON 150 SENTENCES FROM 15
SPEAKERS
Grammar | Perplexity | Percent Correct | Word Accuracy
None 997 31.1% 25.8%
Word-Pair 60 61.8% 58.1%
Bigram 20 76.1% 74.8%

the bigram grammar already imposes tight constraints, we
concluded that our baseline system was inadequate for any
realistic large-vocabulary applications. In the subsequent
sections, we describe our steps to improve the baseline
SPHINX by incorporating knowledge and contextual
modeling.

IV. ADDING KNOWLEDGE TO SPHINX
A. Fixed-Width Speech Parameters

The easiest way to add knowledge to HMM’s is to in-
troduce additional fixed-width parameters, or parameters
than can be computed for every fixed-size frame. All we
have to do is to devise a way of incorporating these pa-
rameters into the output pdf of the HMM’s. In this sec-
tion, we consider several types of frame-based parame-
ters, and discuss possible ways of integrating them.

1) Bilinear Transform on the Cepstrum Coeffi-
cients: The human ear’s ability to discriminate between
frequencies is approximated by a logarithmic function of
the frequency, or a bark scale [32]. Furthermore, Davis
and Mermelstein [33] have shown these logarithmically
scaled coefficients yield superior recognition accuracy
compared to linearly scaled ones. Therefore, there is
strong motivation for transforming the LPC cepstrum
coeflicients into a mel-frequency scale.

Shikano [34] reported significant improvement from
using a bilinear transform [35] on the LPC cepstral coef-
ficients. Bilinear transform is a technique that transforms
a linear frequency axis into a warped one using the all-
pass filter

=1
-1 (zZ - a)
new ~7_1< <1 3
Z (1 - az 1) ( a ) ( )
Wpere = @ + 2 tan™! <&> (4)
1l —acosw

where w is the sampling frequency expressed by the nor-
malized angular frequency, w,,, is the converted fre-
quency, and a is a frequency warping parameter. A pos-
itive a converts the frequency axis into a low-frequency
weighted one. When a takes on values between 0.4 and
0.8, the frequency warping by a bilinear transform is
comparable to that of the mel or Bark scales. In this work,
we use a value of 0.6 for a.

2) Differenced  Cepstrum  Coefficients: Temporal
changes in the spectra play an important role in human
perception [36]. This is particularly true for speaker-in-
dependent recognition, where formant slopes are more re-
liable than absolute formant locations. Thus, it would be

desirable to incorporate ‘‘slope’’ measurements into re-
cognizers. Moreover, since HMM s assume each frame is
independent of the past, it would be desirable to broaden
the scope of a frame.

We use a simple slope measure, differenced LPC cep-
strum coefficients [34]. The difference coefficients for
frame n are the difference between the coefficients of
frame n + 6 and n — §. In our current implementation, a
differenced coefficient is computed every frame, with § =
2 frames, giving a 40 ms difterence. In a preliminary ex-
periment, we found this measure to be as good as the
regression coefficients used in [37] and [7].

3) Power and Differenced Power: Although LPC-
based parameters perform well in speech recognition, they
do not contain sufficient information about power. For ex-
ample, coefficients in silence or noise regions are not very
meaningful. Therefore, it is desirable to incorporate power
into our recognizer. Rabiner et al. [23] obtained signifi-
cant improvement by adding power into the distance met-
ric in vector quantization, and Shikano [34] reported sim-
ilar results. Finally, in a detailed study of prosody in
speech recognition, Waibel [38] found power to be the
most important prosodic cue.

Since raw power may vary widely from speaker to
speaker, we normalized power by subtracting the maxi-
mum power value in the sentence from each power value
in the sentence. In our real-time system, we used an au-
tomatic gain control algorithm with a 250-ms look-ahead
to predict the maximum power in a sentence.

Another important source of information is differenced
power, which is computed the same way as differenced
LPC cepstrum coefficients. Differenced power provides
information about relative changes in amplitude or loud-
ness. Indeed, our preliminary experiments indicated that
differenced power is more useful than power.

4) Integrating Fixed-Width Parameters in Multiple
Codebooks: There are many ways to integrate the above
coefficients into the framework of a discrete HMM recog-
nizer. We considered several possibilities [15], and de-
cided to use multiple-codebook integration [39]. Using
this technique, coefficients are divided into sets, and each
set is quantized into a separate codebook. We created three
codebooks, each with 256 codes. These codebooks were
generated from 1) bilinear-transformed LPC cepstrum
coeflicients, 2) differenced bilinear-transformed LPC cep-
strum coefficients, and 3) a weighted combination of
power and differenced power.

For each frame of speech, not one but several VQ codes
are used to replace the input vector. Since each input
frame is no longer a single symbol, but rather a vector of
symbols, the discrete HMM algorithms must be modified
to produce multiple symbols at each time frame. By as-
suming that the multiple output observations are indepen-
dent, the output probability of emitting multiple symbols
can then be computed as the product of the probability of
producing each symbol.

The multiple-codebook approach has a distinct advan-
tage over single-codebook approaches—namely, reduced
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quantization error. If too many features are used in VQ,
the distortion will be very large, which means the ob-
served vectors will match their corresponding prototype
vectors poorly. Multiple codebooks reduce the distortion
by partitioning the feature space into several smaller sub-
spaces. Table II clearly illustrates this point with the com-
parison of one-codebook distortion and three-codebook
distortion.

Another advantage of multiple codebooks is the large
increase in the dynamic range and precision of the result-
ing parameters. With three codebooks, there are 256* pos-
sible parameter combinations using just 256 X 3 param-
eters. With such an increase in precision comes the ability
to make finer distinctions.

However, the independence assumption with multiple
codebooks is inaccurate. Also, more memory and time are
needed with multiple codebooks. But we felt that these
disadvantages were well compensated by the advantages.

B. Lexical/Phonological Improvements

Our next set of improvements involved the modification
of the set of phones and the pronunciation dictionary.
These changes lead to more accurate assumptions about
how words are articulated, without changing our assump-
tion that each word has a single pronunciation.

The first step we took was to replace the baseform pro-
nunciation with the most likely pronunciation. For ex-
ample, the first vowel of the word delete will appear as
/iy/ in most dictionaries, but it is actually pronounced as
/ih/ most of the time. This correction process modified
about 40 percent of all the baseforms.

With our linear representation of pronunciation, it is
difficult to model the deletions of phonetic events. For
example, the first /d/ of the word did is always released,
while the last /d/ may be unreleased. Also, closures be-
fore stops are optional. We model these two types of dele-
tions implicitly in the HMM parameters. We created sep-
arate models for the released stops and optional stops. We
also merged closure-stop pairs as a single phone. These
changes enabled the modeling of deletions within linear
HMM’s.

Although the English phonemes are well defined, there
are actually many frequently used sounds that are not pho-
nemic. For example, stop-fricative pairs such as /ks/,
Ips/, Its/, /bz/, /dz/, or /gz/ are actually quite different
from the concatenated phoneme pairs. They appear more
like different affricates. Thus, it is sensible to model them
as special phones. In this study, we only model /ts/ in this
fashion due to the lack of training data for the other non-
phonemic affricates.

In order to improve the appropriateness of the word
pronunciation dictionary, a small set of rules was created
to 1) modify closure-stop pairs into optional compound
phones when appropriate, 2) modify /t/’s and /d/’s into
/dx/ when appropriate, 3) reduce nasal /t/’s when appro-
priate, and 4) perform other mappings such as /t s/ to
Its/.

Finally, there is the issue of what HMM topology is
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TABLE 11
QUANTIZATION ERROR OF A SINGLE CODEBOOK VERSUS THE TOTAL
QUANTIZATION ERROR IN THREE CODEBOOKS

Codebook 1-codebook 3-codebook

Size distortion distortion

2 2.42 1.86

4 1.94 112

8 1.45 0.81

16 1.19 0.61

32 1.00 0.48

64 0.83 0.39
128 0.72 0.31
256 0.61 0.25

optimal for phones in general, and what topology is op-
timal for each phone. We found that although the choice
of model was not critical for continuous speech recogni-
tion, the model shown in Fig. 1 led to the best results. In
addition, we experimented with different ways of labeling
the transitions, i.e., which output pdf should be tied to
each transition. Each phone was assigned an appropriate
set of tied transitions.

The improvements in this section led to the set of
phones enumerated in Table III. These improvements have
increased the number of phones from 45 to 48. Table IV
shows a section of our final phonetic pronunciation dic-
tionary.

C. Word Duration Modeling

HMM’s model duration of events with transition prob-
abilities, which lead to a geometric distribution for the
duration of state residence, for states with self-loops:

P:(d) = (1 - a;) a?f (5)

where P;(d) is the probability of taking the self-loop at
state i for exactly d times. Several researchers have ar-
gued that this is an inadequate distribution for speech
events, and proposed alternatives for duration modeling
[401, 1411, [7].

We incorporated word duration into SPHINX as a part
of the Viterbi search. The duration of a word is modeled
by a univariate Gaussian distribution, with the mean and
variance estimated from a supervised Viterbi segmenta-
tion of the training set. By precomputing the duration
score for various durations, this duration model has es-
sentially no overhead.

D. Results

We have presented various strategies for adding knowl-
edge to SPHINX. The results of these strategies are shown
in Table V. The version abbreviations are defined in Ta-
ble VI.

Consistent with earlier results [33], [34], we found that
bilinear transformed coefficients improved the recognition
rates. An even greater improvement came from the use of
differential coefficients, power, and differenced power in
three separate codebooks. Next, we enhanced the dictio-
nary and the phone set—a step that led to an appreciable
improvement.
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TABLE 111
LisT oF THE IMPROVED SET OF PHONES IN SPHINX

Phone | Example | Phone | Example | Phone | Example |
/iyl |  beat /1/ led e/ o1
/in/ | bit /x/ red /%/ kick
/eh/ bet /y/ yet /z/ 200
/ae/ bat /w/ wet /v/ very
/ix/ | roses | /er/ bird 1274 fief
/ax/ the /en/ | button | /th/ thief
/ah/ but /m/ mom /s/ sis
/uw/ | boot /n/ non /sh/ shoe
/uh/ | book | /ng/ sing /hh/ hay
/ao/ | bought | /ch/ | church |/sil/ | (silence)
/aa/ cot /3n/ | judge /dd/ | deleted
/ey/ bait /dh/ they /pd/ ship
lay/ bite /b/ bob /td/ set
/oy/ boy /d/ dad /xd/ | comic
/aw/ | bough | /g/ gag /dx/ | butter
/ow/ boat /el pop /ts/ its

TABLE IV
A SECTION OF THE SPHINX DICTIONARY WITH WORD, ORIGINAL
BASEFORM, AND THE PRONUNCIATION AFTER RULE APPLICATION

Word Baseform After rules
ADDED /ae d ix d/ /ae dx ix dd/
ADDING /ae d ix ng/ /ae dzx ix ng/
AFFECT| /ax f eh k t/ /ax f eh k td/
AFTER /ae £ t er/ /ae f t exr/
AGAIN /ax g eh n/ /ax g eh n/
AJAX /ey 3h ae k s/ /ey jh ae k s/
ALASKA | /Jax 1 ae s k ax/|/ax 1 ae s k ax/
ALERT /ax 1 er t/ /ax 1 er td/
ALERTS /ax 1 er t s/ /ax 1 er ts/

TABLE V
THE SPHINX REsSuLTS WiTH KNOWLEDGE ENHANCEMENTS. RESULTS
SHOWN ARE PERCENT-CORRECT (WORD-ACCURACY)

Version No grammar Word Pair Bigram
31.1% (25.8%)|61.8% (58.1%)|76.1% (74.8%)

Bilinear Trans. | 34.2% (28.6%) | 63.1% (59.4%)|78.5% (76.0%)

Baseline

4F3C 45.6% (40.1%) | 83.3% (81.1%) | 88.8% (87.9%)
Phonology 50.0% (45.3%) | 86.8% (84.4%) [91.2% (90.6%)
; Duration

55.1% (49.6%) | 85.7% (83.8%)|91.4% (50.6%)

TABLE V1
THE DEFINITION OF THE VERSION ABBREVIATIONS USED IN TABLE V
Version Description
Baseline The version in Table L.

Bilinear Trans. | After adding bilinear transform.

4F3C After adding four feature sets and three codebooks.

Phonology After all the dictionary - and phonological
improvements, plus implicit insertion/deletion
modeling.

Duration After integration of word duration probabilities into

the Viterbi Search.

Finally, the addition of durational information signifi-
cantly improved SPHINX’s accuracy when no grammar
was used, but was not helpful with a grammar. With no
grammar, the recognizer must consider many word hy-
potheses, and word duration modeling can filter out many

hypotheses with implausible word durations. On the other
hand, when a grammar is used, much more constraint is
applied, sharply decreasing the utility of duration. There-
fore, in subsequent versions, duration modeling is used
only without grammar.

V. CoNTEXT MODELING IN SPHINX

Given that we will use hidden Markov models to model
speech, one important question is: what unit of speech
should an HMM represent? In the previous sections, we
have used phones as the fundamental unit of speech. An
even more natural unit is words. In this section, we will
discuss the strengths and weaknesses of word and phone
models, as well as a number of other units proposed by
earlier work. Then, we shall propose two new units that
will substantially improve the performance of speaker-in-
dependent continuous speech recognizers. Finally, we will

present comparative results of different variations of these
units.

A. Previously Proposed Units of Speech

Words are the most natural units of speech because they
are exactly what we want to recognize. Word models are
able to capture within-word contextual effects, so by mod-
eling words as units, phonological variations can be as-
similated. Therefore, when there are sufficient data, word
models will usually yield the best performance. However,
using word models in large-vocabulary recognition intro-
duces several grave problems. Since training data cannot
be shared between words, each word has to be trained
individually. For a large-vocabulary task, this imposes too
great a demand for training data and memory. Also, for
many tasks, it would be convenient to provide the user
with the option of adding new words to the vocabulary.
If word models were used, the user would have to produce
many repetitions of the word, which would be extremely
inconvenient. Therefore, while word models are natural
and model contexts well, because of the lack of sharing
across words, they are not practical for large-vocabulary
speech recognition.

In order to improve trainability, some subword unit has
to be used. The most commonly used subword units are
the phones of English. The implementation of SPHINX
we have described thus far is based on phone models. With
only about 50 phones in the English language, they can
be sufficiently trained with just a few hundred sentences.
We have seen that the earlier implementations of SPHINX
yielded reasonably accurate results. However, studies
[42], [13] have shown that well-trained word models out-
perform well-trained phone models. This is because phone
models assume a phone in any context is equivalent to the
same phone in any other context. However, phones are
not produced independently, because our articulators can-
not move instantaneously from one position to another.
Thus, the realization of a phone is strongly affected by its
immediate neighboring phones. Another problem with
using phone models is that phones in function words, such
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as a, the, in, me, are often articulated poorly, and are not
representative instances of the phones. Thus, while word
models lack generality, phone models overgeneralize.

Word-dependent phones [12] are a compromise be-
tween word modeling and phone modeling. The parame-
ters of a word-dependent phone model depend on the word
in which the phone occurs. Like word models, word-de-
pendent phone models can model word-dependent, pho-
nological variations, but they also require considerable
training and storage. However, with word-dependent
phones, if a word has not been observed frequently, its
parameters can be interpolated (or averaged) with those
of context-independent phone models. This obviates the
need of observing every word in training, and facilitates
the addition of new words.

Another alternative—context-dependent phones [20],
[12]—is similar to word-dependent phones; instead of
modeling phone-in-word, they model phone-in-context.
The most commonly used context-dependent model is the
triphone model. A triphone model is a phone-size model
that takes into consideration the left and the right neigh-
boring phones. Triphone modeling is powerful because it
models the most important coarticulatory effects, and is
much more sensitive than phone modeling. However, the
large number of triphones causes them to be poorly
trained, in spite of some robustness provided by interpo-
lating with phones. Moreover, some phonetic contexts are
quite similar, and triphones cannot take advantage of that.

B. Function-Word Dependent Phones

Function words are typically prepositions, conjunc-
tions, pronouns, articles, and short verbs, such as the, a,
in, are. Function words are particularly problematic in
continuous speech recognition because they are typically
unstressed. Moreover, the phones in function words are
distorted in many ways. They may be shortened, omitted,
or seriously affected by neighboring contexts. Since these
effects are specific to the individual function words, ex-
plicit modeling of phones in these function words should
lead to a much better representation. Function words have
caused considerable problems in SPHINX. Function
words take up only 4 percent of the vocabulary, or about
30 percent if weighed by frequency, yet they are account-
able for almost 50 percent of the errors.

In view of the above analysis, we propose a new speech
unit: function-word-dependent phones. Function-word-
dependent phones are the same as word-dependent
phones, except they are only used for function words. This
strategy improves the modeling of the most difficult sub-
set of words. Because function words occur frequently in
any large-vocabulary task, function-word-dependent
phones are readily trainable.

We selected a set of 42 function words (shown in Table
VII), for which we felt there were significant word-depen-
dent coarticulatory effects, as well as adequate training
data. A few of these words are not usually considered
function words, but were appropriate for this task.

4]
TABLE VII
THE LisT OF 42 FUNCTION WORDS THAT SPHINX MODELS SEPARATELY
A ALL AND ANY ARE AT BE
BEEN BY DID FIND FOR FROM  GET
GIVE HAS HAVE  HOW IN Is IT
LIST MANY MORE OF ON ONE OR
SHOW THAN THAT THE THEIR TO USE

WAS WERE WHAT WHY WILL WITH WOULD

C. Generalized Triphones

Although triphones model the most important coarticu-
latory effects, they are sparsely trained and consume sub-
stantial memory. We now describe a technique to deal
with these problems by combining similar triphones. This
approach is justified by the fact that some phones have the
same effect on neighboring phones [15]. By merging sim-
ilar triphones, we both improve the trainability and reduce
the memory usage.

We created generalized triphones by merging contexts
with an agglomerative clustering procedure [43].

1) Generate an HMM for every triphone context.
2) Create clusters of triphones, with each cluster con-
sisting of one triphone initially.
3) Find the most similar pair of clusters that represents
the same phone, and merge them together.
4) For each pair of clusters, consider moving every
element from one to the other.
i) Move the element if the resulting configura-
tion is an improvement.
ii) Repeat until no such moves are left.
5) Until some convergence criterion is met, go to step
2.

To determine the similarity between two models, we
use the following distance metric:

(1 ey ) - (11 (puiy)
T ()"

i

D(a, b) = (6)

where D (a, b) is the distance between two models of the
same phone in context a and b. P, (i) is the output prob-
ability of codeword ¢ in model a, and N, (i) is the for-
ward-backward count of codeword i in model a. m is the
merged model obtained by adding N, and N,. In measur-
ing the distance between the two models, we only con-
sider the output probabilities and ignore the transition
probabilities, which are of secondary importance.

Equation (6) measures the ratio between the probabil-
ity that the individual distributions generated the training
data and the probability that the combined distribution
generated the training data. This ratio is consistent with
the maximum-likelihood criterion used in the forward-
backward algorithm. This distance metric is equivalent
to, and was motivated by, entropy clustering used by [44]
and [28].

This context generalization algorithm provides the ideal
means for finding the equilibrium between trainability and



42

sensitivity. Given a fixed amount of training data, it is
possible to find the largest number of trainable detailed
models. Armed with this technique, we could attack any
problem and find the ‘‘right’” number of models that are
as sensitive and trainable as possible.

D. Smoothing Detailed Models

While the detailed models introduced in the previous
sections are more accurate models of acoustics—phonet-
ics, they are less robust because many output probabilities
will be zeros, which can be disastrous to recognition. We
could intelligently replace the zeros with nonzero prob-
abilities by combining these detailed models with other
more robust ones. For example, we could combine the
function-word-dependent phone models or the general-
ized triphone models with the robust context-independent
phone models.

An ideal solution for weighting different estimates of
the same event is deleted interpolated estimation [45].
Deleted interpolation weighs each distribution according
to its ability to predict unseen data. By equating these
weights to transition probabilities on parallel transitions,
the interpolation problem is transformed into an HMM
problem, and the weights are learned by the forward-
backward algorithm.

In our implementation for training detailed (function-
word-dependent and generalized triphone) models, we
first initialized the detailed models with the general (con-
text-independent) models. Two iterations of the normal
forward-backward algorithm were run using detailed
modeling. During the last iteration, we divided the data
into two blocks, and maintained separate output and tran-
sition counts for each block. After the end of the last it-
eration, 100 iterations of deleted interpolation were run
to combine:

¢ adetailed model (function-word-dependent or gen-
eralized triphone),

® a general model (context-independent phone
models—the counts for a general model are the sum of the
counts in all the detailed models that correspond to the
general model),

® a uniform distribution.
Thus, this procedure not only combined detailed (but less
robust) models with robust (but less detailed) models, but
also smoothed the distribution using the uniform distri-
bution. The summary of the entire training procedure is
illustrated in Fig. 2.

E. Results

Table VIII shows that the direct modeling of phones in
function words substantially reduced errors. Table IX
gives the number of errors (substitutions + deletions +
insertions) made by SPHINX (context-independent models,
no grammar) with and without the use of function-word-
dependent phone models. With function-word-dependent
phone modeling, function word errors are cut by 27 per-
cent, which accounts for almost all of the improvement
from 45.3 to 53.4 percent accuracy.
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Fig. 2. The training procedure in SPHINX.

TABLE VIII

IMPROVEMENT FROM FUNCTION-WORD-DEPENDENT PHONE MODELING AND
GENERALIZED TRIPHONE MODELING. RESULTS SHOWN ARE PERCENT-
CORRECT (WORD-ACCURACY)

Version Models | No grammar | Word pair Bigram

Context-ind. 48  |55.1% (49.6%) | 86.8% (84.4%) | 91.2% (90.6%)
+Fnwd-dep. 153 |62.9% (57.0%) | 90.6% (87.9%) | 93.8% (93.0%)
+Gen. Triphones | 1076 | 74.2% (70.6%) | 94.7% (93.7%) | 96.2% (95.8%)

TABLE 1X
NuUMBER OF FUNCTION WORD ERRORS AND NONFUNCTION-'WORD ERRORS
WITH AND WITHOUT FUNCTION-WORD-DEPENDENT PHONE MODELING.
CONTEXT-INDEPENDENT MODELS WERE USED WITHOUT GRAMMAR

Model Function Word Other

Type Errors Errors
Context-ind. 357 350
CI+fnwd-dep. 261 334

As indicated in Table VIII, generalized triphone mod-
eling led to another substantial improvement. We ran the
agglomerative clustering algorithm to reduce 2381 tri-
phones to 1000 generalized triphones. Combined with
function-word-dependent phones, there were a total of
1076 models.

More detailed descriptions and results on contextual
modeling can be found in [15] and [46].

VI. SUMMARY OF RESULTS

Fig. 3 shows improvements from all versions of
SPHINX described in this paper. The six versions in Fig.
3 correspond to the following descriptions with incremen-
tal improvements:

1) the baseline system, which uses only LPC cepstral
parameters in one codebook;

2) the addition of differenced LPC cepstral coeffi-
cients, power, and differenced power in one codebook;

3) all four feature sets were used in three separate
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Fig. 3. Results of five versions of SPHINX.

codebooks (this version was reported in [47], the first de-
scription of the SPHINX System;

4) tuning of phone models and the pronunciation dic-
tionary, and the use of word duration modeling;

5) function word dependent phone modeling (this ver-
sion was reported in [48]); and

6) generalized triphone modeling (this version was re-
ported in [15] and [49].

Table X shows the word accuracy, gender, and geo-
graphical distribution of the 15 testing speakers. Although
the performance appears to vary from speaker to speaker,
this variability is not predictable from the speaker’s gen-
der or dialect.

VII. CoNCLUSION

We have described SPHINX—a hidden Markov model-
based system for large-vocabulary speaker-independent
continuous speech recognition. On the one hand, HMM’s
perform better with detailed models. On the other hand,
HMM'’s need considerable training. This need is accen-
tuated in large-vocabulary speaker-independence, and
discrete HMM’s. However, given a fixed amount of train-
ing, model specificity and model trainability pose two in-
compatible goals. More specificity usually reduces train-
ability, and increased trainability usually results in over
generality.

Thus, our work can be viewed as finding an equilibrium
between specificity and trainability. To improve train-
ability, we used one of the largest speaker-independent
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TABLE X
SPHINX WORD ACCURACY BY SPEAKERS. ‘*‘MOVED"" MEANS THAT THE
SPEAKER GREW UP IN MORE THAN ONE REGION. RESULTS SHOWN ARE
WORD ACCURACY

Initials | Gender | Dialect |No Grammar | Word Pair | Bigram
beg F Moved 61.7% 91.9% 97.7%
sah F New Eng. 61.4% 91.0% 94.4%
1jd F North Mid. 67.3% 93.7% 98.2%
lmk F South 71.3% 96.6% 96.6%
awf F South 73.9% 94.4% 95.5%
dpk M New Eng. 65.5% 90.2% 93.9%
dab M New Eng. 71.3% 95.5% 98.5%
dlc M | North Mid. 92.6% 100.0% 100.0%
gwt M Northern 83.2% 96.4% 97.6%
ctm M Northern 2.7% 89.3% 92.9%
jfc M NYC 61.2% 93.4% 88.9%
sjk M NYC 80.3% 95.1% 96.3%
cu M South 73.6% 94.3% 98.9%
bth M Western 69.8% 97.7% 96.6%
fr M Western 62.0% 88.1% 92.4%

speech databases. To facilitate sharing between models,
we used deleted interpolation to combine robust models
with detailed ones. By combining poorly trained (context-
dependent, generalized context, function-word-dependent
speaker-dependent) models with well-trained (context-in-
dependent speaker-independent, uniform) models, we im-
proved trainability through sharing.

To improve specificity, we used multiple codebooks of
various LPC-derived features, and integrated external
knowledge sources into the system. We also improved the
phone set to include multiple representations of some
phones, and introduced the use of function-word-depen-
dent phone modeling and generalized triphone modeling.

Through these techniques we have demonstrated that
large-vocabulary speaker-independent continuous speech
recognition is feasible. We believe that with a powerful
learning paradigm, the performance of a system can al-
ways be improved with more training data, subject to our
ability to make the models more sophisticated. The so-
phisticated modeling techniques introduced in this paper
reduced the error rate of our baseline system by as much
as 85 percent, resulting in accuracies of 71, 94, and 96
percent for a 997-word vocabulary with grammars of per-
plexity 997, 60, and 20.
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